机器学习与计算机视觉(深度学习)

【 声明:版权所有,欢迎转载,请勿用于商业用途。 联系信箱:feixiaoxing @163.com】

 

    要说很多现在最火的AI是什么,那就是深度学习。那么深度学习和机器学习有什么关系呢?我们可以通过一问一答的形式来解决。

 

1、什么是机器学习?

    机器学习一般是指传统的人工智能方法,它包括bayes、决策树、svm、线性回归、逻辑回归、神经网络、knn、kmeans等。目前使用较多的机器学习库就是sklearn。

 

2、深度学习是什么?

    深度学习来自于传统的机器学习方法-神经网络,即nerual network。只不过深度学习比传统的神经网络层数更多、计算量更大,深度学习中大量使用的反向传播算法起始就来自于神经网络。深度学习少则几层,多则上百层,随之而来的训练时间也很长。即使使用分布式、gpu运算,也要很长的时间。

 

3、深度学习需要哪些基础?

    深度学习来源于机器学习,而机器学习的本身和矩阵论、概率论、凸函数和优化方法息息相关。所以,如果需要深入了解深度学习,也需要多看看数学相关的内容。深度学习没有脱离模型、损失函数、优化方法的基本框架。

 

4、目前使用比较广泛的深度学习模型有哪些?

    目前使用比较多的深度模型有cnn、rnn、lstm。其中cnn多用于图像,rnn多用于语音、而lstm多用于行为识别。当然,2018年除了深度学习模型以外,gan也非常火,即生成对抗网络。姑且不论gan的具体含义,但是它所体现的思想非常有意义。当然,如果是图像本身,那么一般是cnn+opencv一起使用,如果是语音,一般是kaldi+rnn一起使用。因为我们实在没有必要从头开始做一些基础工作。

 

5、目前开源的深度学习框架有哪些?

    现在使用较多的深度学习框架有tensorflow、keras、caffe、mxnet和darknet等。这几种深度学习框架结构差不多,一般都包含数据表示、layer、network、solver这几个模块。可以重点学习一种,其他几种用到的时候看一下就可以了。我个人比较推荐的是darknet。darknet结构简单,可以移植到多个cpu体系,不依赖于第三方库,支持GPU、cuDNN,使用方便。

 

6、为什么大多数深度学习多使用python来操作?

    大多数深度学习多支持python操作,python不用编译,和matlab类似,也不涉及版权,第三方库多,所以使用广泛。当然,如果是caffe的使用者,可能连编译代码都不需要。当然如果需要将深度学习框架port到嵌入式设备上,那么c&c++是少不了的,大家可以试试darknet移植到arm开发板上面。

 

7、很多论文中提到的yolo、r-cnn、fast r-cnn、faster r-cnn、ssd又是指什么?

    这是针对物体检测提出的优化深度学习网络,比如道路上的行人检测、汽车检测、符号检测等等。我们可以看成是针对cnn和应用场景的进一步优化。

 

8、一般深度学习怎么训练?

    深度学习可以用cpu训练,也可以用gpu训练。但是gpu一般比cpu快十几到几十倍。首先,我们需要自定义网络模型;然后定义网络训练参数,最后输入数据开始训练。等到训练结束后,我们就会得到一个训练模型。使用这个训练模型,我们就可以进行检测、分类和识别了。

 

9、个人如何使用别人训练好的模型?

    可以利用别人的模型加上自己的数据继续训练,或者直接修改别人的softmax层,添加自己的分类选项。个人如果训练数据,可以选择数据量比较少的模型进行训练,如果是项目需要,尽量复用别人的模型,特别是imagenet上面公用的权重模型数据。

 

 

<p style="font-size:16px;"> 本课程适合具有一定深度学习基础,希望发展为深度学习计算机视觉方向的算法工程师和研发人员的同学们。<br /> <br /> 基于深度学习计算机视觉是目前人工智能最活跃的领域,应用非常广泛,如人脸识别和无人驾驶中的机器视觉等。该领域的发展日新月异,网络模型和算法层出不穷。如何快速入门并达到可以从事研发的高度对新手和中级水平的学生而言面临不少的挑战。精心准备的本课程希望帮助大家尽快掌握基于深度学习计算机视觉的基本原理、核心算法和当前的领先技术,从而有望成为深度学习计算机视觉方向的算法工程师和研发人员。<br /> <br /> 本课程系统全面地讲述基于深度学习计算机视觉技术的原理并进行项目实践。课程涵盖计算机视觉的七大任务,包括图像分类、目标检测、图像分割(语义分割、实例分割、全景分割)、人脸识别、图像描述、图像检索、图像生成(利用生成对抗网络)。本课程注重原理和实践相结合,逐篇深入解读经典和前沿论文70余篇,图文并茂破译算法难点, 使用思维导图梳理技术要点。项目实践使用Keras框架(后端为Tensorflow),学员可快速上手。<br /> <br /> 通过本课程的学习,学员可把握基于深度学习计算机视觉的技术发展脉络,掌握相关技术原理和算法,有助于开展该领域的研究与开发实战工作。另外,深度学习计算机视觉方向的知识结构及学习建议请参见本人CSDN博客。<br /> <br /> 本课程提供课程资料的课件PPT(pdf格式)和项目实践代码,方便学员学习和复习。<br /> <br /> 本课程分为上下两部分,其中上部包含课程的前五章(课程介绍、深度学习基础、图像分类、目标检测、图像分割),下部包含课程的后四章(人脸识别、图像描述、图像检索、图像生成)。 </p> <div> <br /> </div> <p> <br /> </p> <p> <br /> </p> <p style="font-size:16px;"> <br /> </p> <p style="font-size:16px;"> <img src="https://img-bss.csdn.net/201902211157137641.jpg" alt="" /><img src="https://img-bss.csdn.net/201902211157578041.gif" alt="" /><img src="https://img-bss.csdn.net/201902211158173579.gif" alt="" /><img src="https://img-bss.csdn.net/201902211158498135.gif" alt="" /><img src="https://img-bss.csdn.net/201902211159093293.gif" alt="" /><img src="https://img-bss.csdn.net/201902211159209625.gif" alt="" /> </p> <p style="font-size:16px;"> <br /> </p>
相关推荐
<p style="font-size:16px;"> 本课程适合具有一定深度学习基础,希望发展为深度学习计算机视觉方向的算法工程师和研发人员的同学们。<br /> <br /> 基于深度学习计算机视觉是目前人工智能最活跃的领域,应用非常广泛,如人脸识别和无人驾驶中的机器视觉等。该领域的发展日新月异,网络模型和算法层出不穷。如何快速入门并达到可以从事研发的高度对新手和中级水平的学生而言面临不少的挑战。精心准备的本课程希望帮助大家尽快掌握基于深度学习计算机视觉的基本原理、核心算法和当前的领先技术,从而有望成为深度学习计算机视觉方向的算法工程师和研发人员。<br /> <br /> 本课程系统全面地讲述基于深度学习计算机视觉技术的原理并进行项目实践。课程涵盖计算机视觉的七大任务,包括图像分类、目标检测、图像分割(语义分割、实例分割、全景分割)、人脸识别、图像描述、图像检索、图像生成(利用生成对抗网络)。本课程注重原理和实践相结合,逐篇深入解读经典和前沿论文70余篇,图文并茂破译算法难点, 使用思维导图梳理技术要点。项目实践使用Keras框架(后端为Tensorflow),学员可快速上手。<br /> <br /> 通过本课程的学习,学员可把握基于深度学习计算机视觉的技术发展脉络,掌握相关技术原理和算法,有助于开展该领域的研究与开发实战工作。另外,深度学习计算机视觉方向的知识结构及学习建议请参见本人CSDN博客。<br /> <br /> 本课程提供课程资料的课件PPT(pdf格式)和项目实践代码,方便学员学习和复习。<br /> <br /> 本课程分为上下两部分,其中上部包含课程的前五章(课程介绍、深度学习基础、图像分类、目标检测、图像分割),下部包含课程的后四章(人脸识别、图像描述、图像检索、图像生成)。 </p> <p style="font-size:16px;"> <br /> </p> <p style="font-size:16px;"> <img src="https://img-bss.csdn.net/201902221256508000.gif" alt="" /><img src="https://img-bss.csdn.net/201902221257045928.gif" alt="" /><img src="https://img-bss.csdn.net/201902221257156312.gif" alt="" /><img src="https://img-bss.csdn.net/201902221257252319.gif" alt="" /> </p>
©️2020 CSDN 皮肤主题: 编程工作室 设计师:CSDN官方博客 返回首页